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ABSTRACT : The purpose of this paper is to develop a theory of smoothing

for finite dimensional linear stochastic systems in the context of stochastic

realization theory . The basic idea is to embed the given stochastic system

in a class of similar systems all having the same output process and the same

Kalman-Bucy filter. This class has a lattice structure with a smallest and a

largest element; these two elements completely determine the smoothing esti-

mates. This approach enables us to obtain stochastic interpretations of many

important smoothing formulas and to explain the relationship between them .
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1. INTRODUCTION

Let {x(t); 0 ~ t � T} and {y(t); 0 � t � TI be two stochastic vector

processes, of dimensions n and m respectively, defined as the solution of

the linear system of stochastic differential equations

Idx = A(t)x(t)dt + B(t)dw ; x(0) = (l.la)
(S) u~

~dy = C(t)x(t)dt + D(t)dw ; y(O) = 0 (1.lb)

where w is a vector process, of dimension p � m , with orthogonal incre-

ments such that

E{dw) 0; E{dwdw ’} = Idt (1.2)

(prime denotes transposition), ~ is a centered random vector with finite

covariance II := E{~~~’} and uncorrelated with w , R( t )  := D(t)D(t)’ is

positiye definite on [0, TI, and A, B, C, D, and R ’ are matrices of

analyt ic functions defined on [0 , T) .  The model S is usually called a

linear stochastic system; y is its output process , w is its input process

and x its state process. We shall assume that the representation S is

minimal in the sense that there is no other model of the form (1.1) with the

process y as its output and with a state process x of smaller dimension

than n. Clearly the matrix function P(t) := E{x(t)x(t)’} satisfies the

differential equation

P = AP + PA ’ + BB’ ; P(0) = TI (1.3)

on [0, T]. We shall call P the state covariance function of S.

The following problem is of considerable importance in the systems sciences.

For an arbitrary t € [0, T], find the linear least-squares estimate ~(t) of

the state vector x(t) given the output {y(T); 0 � v � TI, i.e., the wide

sense conditional expectation
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~(t) = E{x(t) l y(t); 0 � r � TI (1.4)

in ths terminology of Doob [1]. This is the smoothing problem , and it has

generated a rather extensive literature [2-171 . (See the survey paper [18]

for further references.) Here we shall study this problem from a new angle

employing concepts and techniques from the stochastic realization theory

developed in [20-22] and more recently in [23-33] . The basic idea consists

in embedding the model (1.1) into a class S of models S all having the

same process y as its outpu t and all having the same Kalman-Bucy filter .

Such a representation is called a stochastic realization of y. (Note that

we only consider proper realizations [20], i.e., models S whose outputs

not merely have the same covariance properties, the only requirement in the

earlier realization theory [34-38], but are equal for each t a.s.) It can

be seen that , s l ight ly extended , the class S has a lattfce structure with a

smallest (St) and a largest (S*) element, the partial ordering being in-

duced by the “size” of the covariance matrix . P(t) in the sense that P1 > P2

if P1 - P2 is positive definite. This approach will enable us to obtain

stochastic interpretations of many important smoothing formulas and lay the

groundwork for a theory of smoothing which so far has been lacking.

Our interest in the smoothing problem was caused by the Mayne-Fraser two-

filter formula [5, 6], on which topic a large number of papers have been writ-

ten [7-9, 12-17]. In some of these papers the authors have encountered dif-

ficulties in motivating this formula, and the many attempts to justify it

stochastically have, in our opinion, been less than convincing~ In our sto-

chastic realization setting the two filters have a natural interpretation :

they are simply the minimum and maximum variance realizations S~, and S’~

respectively. Hence the latter is not a “backward filter” as suggested in the

literature (although it can be reformulated as such), but a “forward filter”

just as its structure suggests.
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At f i rst sight some of the technical assumption s above may seem rather

stringent, namely the minimality condition and the analyticity of the coeffi-

cient matrices. These conditions are introduced to insure that , for each

S E S , the state covariance matrix P(t) is invertible for each t € (0, T) .

It is quite probable that these assumptions can be relaxed~ but our object

here is to convey some basic ideas, and we do not want to obscure matters by

introducing extra difficulties of a purely technical nature. On the other

hand, the model (1.1) is more general than the one usually encountered in

the smoothing literature in that Bdw and Ddw may be correlated . There is

a reason for this too. To limit our analysis to models S for which BD’ = 0

would render the class S incomplete.

The contents of the paper are as follows. Section 2 is devoted to some

preliminary results. We present a strict sense version of some results on

backward Markovian representations developed, for much the same purposes , in

[15 , 16]. The idea of proof is borrowed from [20]. In Section 3 we define

the stochastic realization setting mentioned above, and in Section 4 we apply

it to derive and interpret various smoothing procedures.

2. PRELIMINARIES

Let H be the space of all centered stochastic variables (on an under-

lying probability space) with finite second-order moments. Then H is a

Hilbert space with inner product (~~, n)  = E{~~ ) . For an arbitrary k-dimen-

sional stochastic process {z(t); 0 � t � TI with components in H, define

Ht(z) to be the (closed) subspace spanned by the random variables

{z 1(t), z2(t), .. ., zk(t)I , and let H(z) be the closed linear hull in H

of the subspaces {H
~
(z); 0 � t ~ TI; we shall write this as H(z)

~~t€ [0,T) Ht(z). Similarly define the past space H, (z) := V 1€io ~~i 
H
~

(z)



and the future space H~ (z) = V 
~ [t ,T] H1(:). Sometimes we shall be more

interested in spaces spanned by the increments of z. Hence we define H(dz) ,

H (dz) and H~(dz) to be the closed linear hulls in H of ~z(t) -

~~ € I) where I is the interval [0, T), [0, t) and [t, T] respectively.

For each ~ € H and subspace K c H let E{n~K} be the projection of n

onto K, i.e., the wide sense conditional mean [1]. Let u be a stochastic

vector with components in H, and let H(u) be the closed linear span in H

of the components of u. Then, for any n € H, we shall often write E{iilu}

in place of E{~ IH(u)}, and, for any subspace K c H, E{ujK} will denote

the vector with components E{u
~
1K} . We shall need the following lemma, the

proof of which can be found in most standard texts on estimation theory.

LEMMA 2.1. Let u and v be two stochastic vectors with conrpo nents in

H and assume that E~vv ’) is positive definite. Then

E{ulv } = E{uv ’} (E~vv ’}~~
1v. (2.1)

The state process x defined by (l.la) is a wide sense Markov process

[1), i.e.,

~{x(t)I H (x)} = ~{x(t)~x(s)) for t � s. (2.2)

To see this, merely note that x(t) can be written

ft
x(t) = ~~(t , s)x(s) +

~ ~(t , T)B(T)dw (2.3)
J s

and that H (dw) .i. H0(x) e H (dw) ~ H (x) . (The symbol i. denotes “orthogo-

nal to. ”) Here , of course, ~ is the transition matrix defined by

(t, s) A(t)~~(t , s); ‘~‘(s , s) 1 (2.4)
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In deriving the main results of this paper we shall need to reverse the di-

rection of time in (1.1). The ~~rkov property is independent of the choice of

time direction and therefore we also have

~{x (s)JH (x)} = E{x(s)Jx(t)} for t � s. (2.5)

(In the present setting this can be seen by observing that, in view of (2.3),

H (x)eH
~
(x)cH

~
(dw) .1. x(s).) The differential equation (l.la) , however, is

not symmetric with respect to time; the two terms in the right member of (2.3)

are orthogonal if and only if t � s. Hence we need to define a backward

version of (l.la). This requires the inversion of the covariance matrix

P(t), which is the topic of the following lemma. Here and in the sequel

Q > 0 (Q � 0) means that the symmetric matrix Q is positive (nonnegative)

definite.

LEMMA 2.2.  Let P be the state covariance function of the linear stochas-

tic system S defined in §1. Then, for any £ > 0, P~~ exists and is ana-

lytic on the interval [~ , T]. If II > 0, the same holds for the cortrplete

interval [0 , T] .

Proof. Integrating ( 1.2) yields

P(t) = ~(t, O)114(t, 0) ’  + ~(t, T) B( T )B ( T) ’~ (t, T) ’dT (2.6)
J O

which is positive definite if TI > 0; hence , since A and B are analytic

on [0, T], so is P~~. Now assume that iT 4 0. Since S is minimal , (A, B)

must be completely controllable. In fact, were this not the case, the input-

output map of S could be reduced [39), contradicting minimality. Since in

addition A and B are analytic, (A, B) is totally controllable [40, 41].

Therefore since the second term in (2.6) is the controllability gramian,

P(t) > 0 on an)’ interval [c, T]. The analyticity of P~
1 then follows in

the same way as above. 0 -



As we shall see below , it is m ore convenien t to express th~ bac~~ar~ rep-

resentation in terms of the process

i(t) = P(t~~
1x (t) (~~~)

rather than x. In view of Lencna 2.2, i(t ) is well defined wi th components in

H on any interval [c,T]. Let P denote its covariance function , i.e.,

~(t) = E{i(t)i(t) ‘ ).  (2.S)

We are now in a position to formulate a backward version of the state equa-

tion (1.la) .

LEMMA 2. 3. Let x be the s~atc rroc~ss ~~~~
‘ the linear stochasri~ s ;~~

S. Then, for any c > 0, the process x ~~ ‘ined b~ (2.7) sa;is~-i~s ~~

ward rmode Z

di = -A(t) ’i(t)dt + ~(t)d~ ; i(T) = (2.9)

on Ic , T], where ~ = P(T~~
1
x(T), ~ = P ’B and ~ is a p-dirmensiona-

orthogonal increment process sa~i~~~inp (1.2) and ;he con

H;(d~) i H (x) for all t. ~~e incrert7ents cf ~ are given ~

= dw - B(t) ’P(t)~~ x (t)dt , (2.10)

and the covariance function ( 2 . 8 )  P = P
1
; it satisfies t~.e iarz~nc~

equation

= -A’P - PA - ~~~
‘ ; P(T) = , (2.11)

where ~ = P(T)~~~. If TI > 0, ecuations (2.9)-(2.l1) are ~c~~’cd c-~:

interval [0, T].

Lemma 2.3 is a strict sense versi”n of a similar result presented in

[15 , 16] . As explained in [42] , an al ternative justification of the wide

— * ,  .Sr- ~. • .
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sense results [15 , 1~ ] can be obtained by means of the earlier work ~l2 , 13].

The version given in all these papers is however insufficient for ur pur-

poses since it provides a deterministic rather thar. a probabilistic result.

Moreover , we have chosen to write the backward equation in terms of i rather

than x as in [13 , 161. (However, see the “adjoint” formulation in [16].)

The reason for this will become evident in Section 3. Our choice will yield

a backward Kalman-Bucy filter which is invariant over the class S, the one

in [13 , 16] will not.

The proof of Lemma 2.3 follows exactly the same lines as in [20]. It is

based on the observation that , for s � t, the orthogonal decomposition

x(s)  = ~~i(s)IH~(x)} + [i(s) — E{i(s) H~ (x)}] (2.12)

can be written in the form

x (s )  = ‘~(t , s) ‘x(t) ~c ~~~ s) ‘B(T)dw (2.13)

which is the integral form of (2.9).

Proof of Lema 2.3. In view of Lemma 2.2, the state covariance function

P is invertible on the stated interval. Clearly P = P~
1
. Then, since

P = -PpP , (2.11) follows from (1.3). Then Lemma 2.1 together with (2.5) and

(2.7) yields

E~x(s)IH~(x)} = c~(t , s)’i(t) (2.14)

for it follows from (2.3) that E{x(s)x(t)’} P(s)~ (t, s)’ for s � t. Con-

sequently, the process u(t) := ~(t, 0) ‘i(t) is a wide sense bac1a~ard Friar—

tingale with respect to H~(x), i.e.,

E{u(s)IH~(x)} = u(t) for s ~ t, (2.15)

— — -
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and hence it has orthogonal increments . We shall now show that u can be

normalized as follows :

j.5
u(s) - u (t) = j ~~(T , O) ’B(T)dw, (2.16)

J t

where ~ is defined by (2.10). To this end differentiate u(t) =

~~(t, O)’P(t)x(t) and use (l.la) , (2.4) and (2.11) to obtain du =

~(t, 0)’~ (dw - B’Px dt). It remains to show that ~ is an orthogonal incre-

ment process satisfying (1.2). This follows from a tedious but straight-for-

ward calculation of the incremental covariance function. (If B were full

rank, we could conclude this directly from the martingale property (2.15);

this could be achieved by working with the complete system S instead.)

The desired representation is then obtained by noting that

i(s) = ~(O, s)’[u(t) + u( s)  - u(t)],

into which we insert (2.16) to obtain (2.13). Obviously H~(i) i H(d~), for ,

by construction , the two terms in (2.13) are orthogonal for all t .  C

3. FORWARD AND BACKWARD STOCHASTIC REALIZATIONS

Let {y(t); 0 � t � T} be an in-dimensional vector process defined as the

output of the linear stochastic system S introduced in Section 1. Any sys-

tem of type (1.1) [with ~ ~ H, w satisfying (1.2) and ~ .i H(dw)) having the

given process y as its output is called a realization of y. In particular,

by assumption, S is miniri,rzl, i.e., there is no other realization of y with

a state process of smaller dimension~ and analytic , i.e., its parameter ma-

trices A, B, C, D and R 1 are analytic on [0, T]. Clearly the components

of x(t) and y(t) belong to H for all t E [0 , T), and the sane holds for

the increments of w.
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It is well-known that the least-squares estimate

x~ (t) = E{x(t)IH~
(dy)) (3.1)

of the state process x of S is generated on [0, T] by the Kalr-~an-~~c-~i

t rer

dx~ = Ax~dt + B~R
”2 (dy - Cx

~
dt); x

~
(O) = 0 (3.2a)

1/’where R (t) is the symmetric square root of R(t) = D( t)D( t) ‘ , and the gain

function B~ is given by

B~ 
= (Q~C’ + BD ’)R~~

’2, (3.2b)

the error covariance matrix

Q~(t) = E~ [x(t) - x~(t)J[x(t) — x~ (t) ] ‘} (3.2c)

being the solution of the matrix Riccati equation

1Q~ = AQ
~ 

+ Q~A ’ - (Q~C ’  + BD ’)R ’(Q~C ’  + BD ’) ’ + BB’
(3.2d)

~Q~
(0) =

As we shall see shortly there are other realizations which have the

same Kalman-Bucy filter (3.2a). Hence we define S to be the class of all

analytic realizations S of y whose Kalman-Bucy filter, determined as in (3.2),

has the same coefficient functions A, C , R and B~ as in (3.2a). Then (since

we only consider proper [20] realizations) the estimates x,~ are also the sane.

(The error covariance Q,, however, will of course vary over S.) Clearly all

realizations in S are minimal . 1k,reover, it is well-known that the innova;io’:

proce~s {w~ (t); 0 s t � T) , whose increments are defined by

dw~ = R~~” (dy - Cx~d t ) ,  (3.3)

is a process with orthogonal increments satisfying (1.2) and H (dw~) =
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H~(dy) for all t c [0, T] (see e.g. [43]). Then (3.2a) and (3.3) yield

dx~ = Ax~dt + B~dw~ ; x,~(O) = 0
(St) (3.4)

dy = Cx~dt + R~
’2dw~.

Since B~ is analytic on [0, TI ,  this is a realization in S whose state

covariance matrix P~(t) := E{x~(t)x~(t)’} satisfies

= AP~ + P~
A + B~B~ ; P

~
(O) = 0. (3.5)

(This can also be seen by subtracting (1.3) from (3.2d) , noting that Q~ 
=

P - Ps .) Now define the n x m matrix function

G = P~
C’ + B~R”2 , (3.6)

which is clearly analytic on [0, T].

LEMMA 3.1. Let G be defined by (3.6). Then for any realization S E S,

P(t)C(t)’ + B(t)D(t)’ = G( t) (3 .7)

for all t e [0, TI.

Proof. This follows from (3.2b) and the fact that Q~ 
= P - P~ . 0

Consequently A, C, G and R are invariants for the class S --in fact,

the covariance function of y is determined by these four matrix functions

[37, 44J--whereas B, D, P, w and x will vary with different realizations

c. Actually even the dimension p of the process w will vary. However,

since R is full rank, we will always have p � in.

The Kalman-Bucy filter realization Si,, belongs to a class of realiza-

tions for which p is minimal , i.e., p = m . Define S0 to be the subclass

of all S e S such that p = in and x(O)€ H(dy). (Note that, since y(O) = 0,
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H(dy) = H(y) . We shall use the former notation as we are really only in-

terested in the increments of y, the assumption y(0) = 0 being one of

convenience.) Let

dx =A x d t + B d w  ; x (0) =~~~~o o 0 0  0 0
(S
0
) (3.8)

dy = Cx dt + D dw
0 0 0

be a realization in S with state covariance function P . Then D iso 0 0

invertible and therefore

dx0 = Ax0dt + B0D~
1 (dy - Cx dt); x0(O) = 

~~,
. (3.9a)

Now let (1.1) be an arbitrary realization in S and define

Q
0 

= P - P .  (3.9b)

Then Lemma 3.1 yields

B0 = (QC’ + BD’)(D’)~~ (3.9c)

where Q0 satisfies the matrix Riccati equation

= AQ0 + Q0A ’ - (Q0C’ 
i. BD’)R~~(%C ’ + BD ’)’ + BR ’

(3.9d)

%(O) = -

To see this just insert (3.9c) into the equation (1.3) corresponding to P0

and subtract from (1.3). Formally (3.9) looks precisely like the Kalman-Bucy

filtering equations (3.2). In fact, the differential equations are the same,

only the initial conditions differ. However, note that, unlike Q~,
, Q0 is

in gei~eral indefinite due to the definition of Q0(0). In view of the fact

that E H(dy), (3.9a) implies that H(x0) 
c H(dy). We shall call a reali-

zation S E S satisfying the condition H(x) c H(dy) internal; if

— - -_ ___.~~
_ .. ._‘_a_a .-—
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H(x) ~ H(dy) we shall say that S is external [20]. Hence we have shown that

all S e S~ are internal . In Section 4 we shall see that, if (
~
] is full

rank, S0 is precisely the class of all internal realizations. We shall also

see that S0 is a partially ordered set with a smallest element and that it

can be slightly extended to also contain a largest element .

Our next task is to establish a backward counterpart S to each realiza-

tion S e S. We shall begin by restricting our attention to the subclass 5÷

of all realizations S € S for which II > 0.

LEMMA 3.2. The class S~ is nonen7pty .

Proof. It is shown in [44] that, since y is generated by the model (1.1),

for some c > 0 the covariance function of y can be continuously extended to

the interval [0, T + C] while retaining its nonnegativity property and its

F “lumped” character. It is not hard to modify the proof of [44, Appendix II]

to show that a similar extension, which also preserves analyticity, can be made

to the interval [-c, T] for some e > 0. Hence, by the main result of [44],

there is an (analytic) realization S
~ 

of y on [-c, T) with state-dimen-

sion n. Since its restriction to [0, TI belongs to S, it is minimal .

Therefore (A, B) corresponding to S
~ 

is totally controllable [40], and

consequently P(O) > 0 by the argument of Lemma 2.2. Hence the restriction

of S~ to [0, T] belongs to S~ . 0

Let S e S~. Then, by Lemma 2.3, x = P 1x is defined on all of [0, TJ

and satisfies (2.9) there. Inserting (2.10) into (l.lb) yields dy =

(CP + DB ’ ) idt + Dd , so in view of Lemma 3.1 we have obtained a backward model

for y on [0, TI, namely

di -A’idt + ; x(T) =

(
~) (3.10)

d y = G ’ id t + D d ~

--
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where ~ = P(T)~~x(T) .L H(d~) and ~ P~~B. Its state covariance function

P = P~~ satisfies (2.11). We shall call any model of type (3.10) with y

as its output, ~ € H , ~ satisfying (1.2) and ~ .1. H(dw) a bac~~ard realization

of y. In view of Lemma 2.2, ~ is also analytic (i.e., A , ~~, G, D and R 1
~

are analytic). Note that S and ~ have the sane state apace, i.e.,

H
~
(x) = Ht(x), (3.11)

for each t € [0 , TI.

By symmetry with the forward setting we can now see that

= E{i(t)fH~(dy)) (3.12)

is generated by the backi~.iard Kalman—Bucy filter

di~ = -A’i~dt +.~~R~~~
2(dy - G’i~dt) ; i~ (T) = 0, (3.l3a)

— — - , -1/2 . —where B~ = -(Q~G - BD )R , and the error covariance Q~(t) :=

E{ [i(t) - i
~(t)] [i(t) 

- i~(t)] ‘1 satisfies

= -A ’~~ - 
~~ + (Q~G - 

~D’)R 
1
(Q~G - BID ’) ‘ - BB’

1 (3.13b)
= P(T) ,

and that the bacla ,ard innavation process {
~~
(t); 0 � t � T}, given by

~~ = R~~~
2(dy - G’i~dt) (3.14)

has orthogonal increments and satisfies (1.2) and H(d~~) = H~(dy) for all

t e [0, T]. (See [20, 45].) Hence the covariance function P~(t) :=

E{i~(t)i~(t) ‘} satisfies

= -A’P~ - P~A - ; P~ (T) = 0. (3.15)

The following lemma ensures the invariance of the backward filter (3.13a).
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LE1~?1A 3.3. The gain function 
~ 

is uniquely determined by the four

(invariant) matrix functions A, C , C , and R, i.e., B~ is invariant for S.

Proof. Since 
~~~ 

= - f~ it follows from Lemma 3.1 that B~ =

(C’ - P~G)R~~
”2, which inserted into (3.15) yields an equation for P~ which

only depends on A, C, G and R. Hence the same holds for B~. =
Now define .~ to be the class of all analytic backward realizations ~

having (3.13a) as its backward Kalman-Bucy filter, and let 
~~~ 

be the sub-

class consisting of those ~ € ~ for which TI > 0. In the same way as in the

forward setting it is seen that the realization

di~ = -A ’x~dt + ~~d +; i~(T) = 0

(Se) (3.16)

dy = G’i~dt + R~
’2
d~~

belongs to ~~. The state covariance function P~ of 
~ 

is given by (3.15).

By Lemma 3.3 the class .~ is uniquely defined in terms of the invariants A,

C, G and R, and therefore the backward counterpart S of any S € S~ be-

longs to .~~. In particular, since P(T) is finite and positive definite,

€ ~~~~ Obviously there is a complete symmetry between the forward and the

backward settings; all results of this section have backward versions obtained

by merely starting from a minimal backward realization instead. Consequently

all realizations in .~ are minimal . (Indeed, were this not the case, we

could, by reversing the procedure above, construct a forward realization of

dimension less than n, contradicting our original minimality assumption.)

Moreover, it is not hard to see that the two subclasses S and .~ are in
+ +

one-to-one correspondence.

In order to extend the one-one correspondence between forward and back-

ward realizations beyond S and ~ we shall have to enlarge the classes

S and S slightly in the following way. Let S be the class of all ana-
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lytic realizations (1.1) of y defined on [0, T - c) for any c > 0 and

having (3.2a) for its Kalman-Bucy filter on each such interval, and let

be the corresponding extension of The classes and 
~ 

are defined

analogously with respect to (3.l3a) and all intervals [c , T]. We shall call

the elements of S and ~ generalized realizations. Clearly S c 5 and

c ~~. Then the forward-backward construction above can be redone in the light

of Lemma 2.3 to yield the following theorem , which also summarizes some of the

pertinent facts on this topic .

THEOREM 3.1. To each realization (1.1) in S there corresponds a gen-

eralized backward realization (3.10) in .~ such that P = ~~~ ~ =

x = P 1x and d~ = dw - B’P~~xdt . Likewise to each backward realization

(3.10) in ~ there is a generalized realization (1.1) in S such that P =

F P 1, B = P 1B, x = P 1x and dw = d~ + ~‘P~~idt. For eac h such pair

(S , ~) of fo rward and backward (generalized) realizations, relation (3.11)

holds for each t for which both S and ~ are defined.

Since P~(T) = 0, the backward filter realization S
~ 

has a forward

counterpart only in this generalized sense, and it has the form

dx* = /uc*dt + B*dw* ; x~(0) =

(S*) (3.17)
dy = Cx*dt + R’~

”2dw*

with state covariance function P~ = P~~ satisfying

= AP* + p*A ? + B*B*~ 
; P~ (0) = P~ (0) 1 (3.18)

on [0, T). Obviously P*(t) as t T. [Note that B*B*’ is not inte-

grabie on (O,co).] The following lemma explains the “super star” notation.
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LEMMA 3.4. Lc~ P L~c ~7~c e~ate coz-’ariance function of a realization

S € S. :~~

P~ (t) � P(t) � p*(t) (3.19)

for all t ~ [0, T).

Proof. Since Q~(t) is a covariance matrix , Q~(t) � 0. But Q~ 
=

P - P~1 and therefore P(t) � P~(t). ~~ analogous ar~~ment in the backward

setting yields P(t) � P
~ (t), i.e., P ( t)~~ � P*(t)~~ , from which P(t) � P*(t)

follows.

Relation (3.19) induces a partial ordering of 5, S,,, being the smallest

and S* the largest element; the sane holds for Si,, for both S~ and S~

belong to this subclass . (It can be shown that S and S0 have lattice struc-
F- tures, but this goes beyond the scope o~’ this paper.) Since S~ € ~~~ satis-

Lies a Kalman—Bucy type equation

—1/2
dx* = ~~*dt + B*R (dy - Cx*dt) ; x~(0) ~~~~~ (3.20a)

where ~ = P~(0)~
’
~~(0), 

and B* can be determined from any other realiza-

tion S € S through equations (3.9c , d), setting 8* = B~ and Q
0 

= TI - I1~ .

The corresponding solution Q of the matrix Riccati equation (3.9d) is , in
0

view of (3.9b), Q0 = P - P~ , which is nonpositive definite (Lemma 3.4). For

the smoothing problem it will be more convenient to express B* in terms of

a nonnegative definite solution of (3.9d) instead , and therefore we define

:= -Q0, i.e.,

Q* p* - r . (3. 20b)

in terms of which (3 .9c ,d) yields

B* = _ (Q*C ’ - BP ’) R 112 (3 .2 0c)

— 
~ 1~~~~ ~~~. —

-~~~~~~~~ -
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with Q* satisfying the matrix Riccati equation

IQ* = AQ* + Q*A~ + (Q*C I - BD~)R ’(Q*C~ - B ID ’) ’ - BB’
(3 .2 0d)

~Q*(O) = fl~ — It ,

where 11* = P~
(0)

~~~. Clearly Q*(t)~ ~ as t -~ T. The definition (3.20b)

enables us to interpret Q* as an error covariance function, much in analogy

with the Kalman-Bucy filter. In fact,

Q*(t) = E{[x(t) - x*(t)][x(t) - x*(t)]~ } (3.21)

for all t € [0, T). This is an immediate consequence of the lemma, which we

shall also need in §4.

LEMMA 3.5. Let x be the state process and P the state covariance

function of any realization in S. Then

E {x( t)x~ (t) ‘} = P~,(t), E~x(t)x*(t) ‘} = P(t) (3.22)

and

E{[x(t) - x*(t)][x*(t) - x(t)]’} = 0 .  (3 . 2 3)

Proof. In view of the definition (3.1), Ht(x - x~) .i. Ht(x*) and there-

fore the first of relations (3.22) follows. The analogous relation in the

backward setting reads E{i(t)i~(t)’} = P
~~
. Hence E{x(t)x*(t)~} =

PE{i(t)i*(t)~ }P* = P , for i = P~~x and P~ = P~~~. Then (3.23) is an imme-

diate consequence of (3.22). 0

In §4 we shall need to invert both Q~ (t) and Q*(t) for arbitrary

t c [0, T). This is possible for all realizations S e S such that

P~(t) < P(t) < P*(t) for all t on this interval . We shall call the class

of all such S the interior of S and denote it m t  S.

S



LL~”!~ 3. C . :.~ i’:~c~~or ~ -

Proof. Lc’ t Q,~ 
be the error covariance (3.2c) corresponding to r~aii.3-

tion S ~. S . Then Q~(0) = TI > 0. A simple reformulation of (3.2d) yields

= r.Q~ + Q~
’ (B~R

”2D—B) (B~R
”2D-B) ’ (3.24)

where r~ is the f~c~’Lack matrix

-1/’
= A - B~R c (3.25)

of the Ka1r~an-Rucy filter (3.2). The Liapunov type equation (3.24) can be

integrated to yield an expression of the same general form as (2.6). From

this it is seen that Q~(0) > 0 implies that Q~(t) > 0 for all t € [0, T].

It remains to shot.. that Q*(t) > 0 for all t € [0, T). To this end first

note that the corresponding backward realization ~ belongs to 
~~~~~~ 

this is

clear from the discussion l eading to Theorem 3.1. Then we can repeat the ar-

gument above to see that 
~~

(t) > 0 for all t € [0, T]. But Q* = P(P 
~~~~~~

~~~~~~~~~~ Since r > 0 and P~ > 0 on [0, T), Q*(t) > 0 for all t € [0, T) .  0

COROLLARY 3.6.1. Let Q = P~ - P~ . Then Q(t) > 0 for all t € IO ,T) .

COROLLARY 3.6 .2. Let S € S~~. Then Q~~~ (t )  > 0 for all t € 1O ,T].

We shall now demonstrate that the two processes x and x* together

contain all the relevant information on y needed in estimating the state

process x of an arbitrary realization S € S. To this end first note that

(3.1) can be written

E {H
~ 
Cx) IIç cdy) } = H

t(x*), 
(3.26)

and that (3.11) and (3.12) yield

- E {I 1
~
(x)fH (dy)) = Ht (x*) 

(3 .27)

for all t ~ [0, T). Now define the orthogonal complements N; := H;(dy) e

and N := H (dy) e Ht (x*) respectivel y. Then we obtain the orthogo-

nal decomposition
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H(dy) = N; • H~ • N (3.28)

where H~ is the fr~~e apace

= H
~

(x*) V H~(x~) (3.29)

(where A v B denotes the closed linear hull in H of A and B.) Cf. [22,

24, 26].

LEMMA 3.7. (cf. [27]) Let x be the state process of a realization in

S. Then, for t € [0, T),

Ht (x) C H~ S [H(dy)J~

where [H(dy)J
1 

i8 the orthogonal conrp lement of H(dy) in H.

Proof. Clearly Ht(x) ~. N .  To see this note that the components of

x(t) - x~(t) are orthogonal to H (dy) N and that the components of x~(t)

belong to Ht(x*) .~. N .  In the same way we show that H
t

(x) .i. N .  0

4. THE SMOOTHING PROBLEM

Consider an arbitrary realization (1.1) in the class S. The basic problem

before us is to determine the smoothing estimate

~(t) = E{x(t)fH(dy)} (4.1)

for each t e [0, T) and to interpret it in terms of stochastic realizations.

• Let Z denote the corresponding estimation error covariance, i.e.,

Z(t) = E{[x(t) - ~(t)][x(t) - ~(t)]’}. (4.2)

Of course this problem is interesting only if the realization S is external.

However , by not restricting our analysis to external realizations, as a by-

product we shall obtain some interesting results on internal models also.
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In view of Lemma 3.7, ~ (t) € H~ , and consequently there are two matrix

functions K~ and K* such that

~~(t) = K~(t)x~(t) + K*(t)x*(t). (4.3)

The components of the estimation error x(t) - ~ (t) are clearly orthogonal

to H(dy) and hence in particular to the components of x~(t) and x*(t).

Therefore E1x(t)x~(t)’} = E1~~(t)x~(t)’} and E{x(t)x*(t)r} =

By Lemma 3.5, the first of these relations yields P~ = K~P~ + K*P~ and

consequently

K~(t) + K*(t) = I (4.4)

for all t € (0, T), because P~(t) is nonsingular on this interval. The

second relation yields

P(t) = K~(t)P~(t) + K*(t)P*(t) (4.5)

for all t € [0, T). Then solving (4.4) and (4.5) for K~ and K* we ob-

tain K~ Q*Q ’ and K* = Q~Q~
1
~ 

where as before Q~ = P - p
~
, Q* p* - p

and Q = P~ - ~~ Note that Q(t) is nonsingular for all t € [0, T)

(Corollary 3.6.1) and that

Q(t) = Q~(t) + Q*(t) (4.6)

THEOREM 4.1. Let x be thi: state process of a realization (1.1) of

class S. Then the smoothing estimate (4.1) is given by

• 
~~ (t )  = [I - Q~ ( t )Q( t )~~ ]x~ (t) + Q*(t)Q(t )~~ x*(t) (4. 7)

and the erro r covaria rice function ( 4 . 2 )  by

Z(t) a Q~~~
(t) - Q~(t)Q(tY

’Q~(t) (4.8)

for all t € [0, T).
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Proof. Relation (4.7) was derived above for t € (0, T); for t = 0 (4.7)

follows from (4.19) below . To prove (4.8) note that

x - = (I - Q~Q
1)(x - x~) + Q~Q~~(x - x*). (4.9)

By Lemma 3.5 the two terms of (4.9) are orthogonal and therefore, observing

(3.2c) and (3.21),

= C’ - Q~Q
1)Q~(i - Q~

1
Q~

) + Q Q ~~Q*Q ’Q ,

which , in view of (4.6), yields (4.8). 0

Relation (4.5) should be compared with the decomposition in [46, Theorem 6].

Note however that K~(t) and K*(t) are projections if and only if the reali-

zation S is internal . To see this observe that (K*)2 = K*, i.e.,

Q~Q
’Q~ 

= Q~ . 
if and only if Z = 0 (Theorem 4.1). •

Theorem 4.1 is a generalization of results given in [20-22]. Following

the procedure in [22] ~~ obtain an alternative derivation by observing that

x~(t) and

z(t) = x*(t) - x~(t) (4.10)

are orthogonal (to see this, note that x~(t) = 
E{x*(t)jH (dy)}) and applying

Lemma 2.1. In fact, since ~~(t) = E~x(t)IH~} (Lemma 3.7) and H~ =

Ht(x*) e Ht(z),

• ~~(t) = E{x(t)lx~ ( t)}  + E{x(t)lz(t)}. (4.11)

• Then using Lemmas 2.1 and 3.5 and the fact that

Q(t) = E{z ( t )z (t ) ’ }  (4.12)

we obtain 

• .
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~~(t) = x~(t) + Q~(t)Q(tY~ z(t), (4.13)

which is precisely (4.7).

If. for the moment, we restrict our attention to realizations in the in-

terior of S we obtain the following well-known result.

COROLLARY 4.1. ~et S € m t  S, let x be the state process of S, and

let ~ be the corresponding smoothing estimate (4.1). Then., for each t€ [0,1)

~ (t) = E(t)[Q~(t)~~x~(t) + Q*(t)~~x*(t)], (4.14)

where x~ and x~ are given by (3.2) and (3.20) respectively and the smoothing

error covaricznce E by

= Q~(t)~~ + Q*(t)
1
. (4. 15)

Proof. Since S € m t  S. Q~ 
and Q* are invertible. By writing (4.8)

as Z = Q
~Q~

1(Q - Q~
) and using (4.6), it is seen that

Z = Q Q ’Q* (4.16)

Inverting this and again using (4.6) yields (4.15). From (4.16) we also see

that Q~Q~
1 

= Z ( Q*) ~~~~~ Then I - Q~Q~ 
= E [Z~~ - (Q*)~~~] = IQ~~. Hence

(4.14) follows from (4.7). 0

Relations (4.14) and (4.15) together with (3.2) and •3.20) is the Mayne—

Fraser two—filter f ormuZ-a [5, 6], which has received considerable attention in

the literature [7-9, 13-17]. Although this algorithm is easy to derive for-

mally [9], its probabilistic justification has caused considerable difficulty,

partly due to the fact that Q*(t) as t -
~ T. The system (3.20) has

usually been interpreted as a backward filter, and in [14-17] it is presented

as the limit of such a filter as a certain covariance matrix function tends

to infinity. However, in our stochastic realization setting (3.20) has a very



nat • ;r : .  i t ~~~~~ t~e max imum—variance ~~~~~~~ r e a l i : a —

tion S’. By using the i~ cntitv

= ~.(tY
1
~~~(t) (4 .17)

we can instcaJ ‘- rite the s~ oc’thing ferrula (4.14) in terms of two Kalman-Bucy

filters , one (3.2) evolving forward and the other (3.13) evolving backward in

time. (Note that then (4.14) is defined on the whole interval [0, TI.) This

fact was pointed out in [14 , 15 , 17], in which papers the back ward estima te

= E{x(t)~ H~ (dv) )  (4 .18)

was used in place of x~ , a choice that may at first sight seem more natural .

The reader should however not e that

= P(t)P*(t)~~ x*(t) (4.19)

is not invariant over .5 and is therefore less suitable for our purposes .

It is not hard to see that

= [(Q*)~~ + p~~]p(p*)~~ (4.20)

and consequently (4.14) may also be written

~~(t) = (t){Q~(tY
1x~(t) + [Q*(t)~~ + P(tY1]2b(t)}, (4.21)

which is the formula presented in [14 , 15 , 17]. The partitioned smoothing

formula [12 , 151 also can be seen to be equivalent to (4.14), and it can be

used to derive all the equations of the Mayrie-Fraser procedure. In the early

papers [7, SI, relation (4.14) was introduced via a formula [47] for optimal

weighting of two estimates with orthogona] errors. No justification of this

orthogonality was given in [S], and the argument in [7] is incomplete due to

problems with the end point condition . (A more satisfactory treatment has re-

cently been prescnted in [4S].) However, the stochastic realization theory pro-

vides a natural iustification of this procedure. Indeed, (3.23) is the required

orthogonality conditi on.
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The smoothing formulas (4.7) and (4.14) are both based on the nonorthogonal

decomposition (3.29), whereas (3.13) corresponds to the orthogonal decomposition

H~(x*) e H~
(z) (4.22)

(where, in either case, Lemma 3.7 justifies the restriction to the finite

dimensional frame space H~). We shall now take a closer look at representa-

tions of the latter type. It follows from (3.4) and (3.17) that as defined

by (4.10) is the solution of

dz 7~ zdt - QC9R~~
’2dw*; z( 0) = x*(0), (4.23)

where T~ is the feedback matrix (3.25) of the Kalman-Bucy filter (3.2). To

see this , note that the input process w~ of the maximum variance realization

S~ is related to the innovation process w,,, through the relation

dw~ = R~~
”2Czdt + dw* (4.24)

and that B* - B~~= -QC ’R ~~
”2 . We shall need the backward counterpart of

(4.23). Observing that Q is the covariance function of :, Lemma 2.3 yields

the following equation for ~ = Q~~z:

= -F~~dt - C’R~~
”2dw~; ~(T) = 0, (4.25)

for, in view of (4.24), w ,~ is the backward counterpart of w~ with respect

to (4.23). Note that is defined on the whole interval [0, TI. The co-

variance matrix ~ = Q~ 
of ~ satisfies

= -r~ - - C’R 1C ; ~(T) = 0. (4.26)

The estimate ~ is then obtained from (4.13).

THEOREM 4.2. Let x be the state process of an arbitrary realization in

S. Then the smoothing estimate ~(t) satisfies

~(t) = x~(t) + Q~(t)~ (t) (4.27)
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for all t € [0, T], where x~ is given by (3.2) and ~ by (4.25) and (3. 3).

The process ~ is related to x~ and x~ through the relation

~(t) = ~(t)[x*(t) - x~(t)} for t € [0, T). (4.28)

Relation (4.27) is the smoothing formula of Bryson and Frazier [2]. (Also

see [3, 4] and, in particular, [9].) What is new here is its interpretation

(4.28) in terms of the minimum and maximum variance realizations S,,, and S~.

Theorem 4.2 can also be regarded as a generalization of a result presented in

[21], and the basic techniques used there provide an alternative approach to

deriving the above result.

COROLLARY 4.2. The smoothing estimate (4.27) satisfies the stochastic

differential equation

= A~dt + B(I - D ’R~~D)B’~dt + BD ’R~~(dy - C~dt). . (4.29)

with initial condition ~ (T) = x~(T). If S ~ S~ , ~ can be replaced by

- x~) in (4 .29).

Proof. Inserting (3.2a), (3.2d) and (4.25) into

d2 = dx~ 
+ Q~d~ + Q~zdt

and using (3.2b) yields (4.29). If S € S , exists (Corollary 3.6.2),

and (4.27) can be solved for z. 0

We shall now study two different special cases of (4.29). First, let

BD ’ = 0; this is a standard assumption in the smoothing literaWre. Then ~c

is differentiable, and (4.29) reduces to

+ BB’~ ; ~(T) = x~(T). (4.30)

For realizations S € S~~ (4.30) reduces to the smoothing formula of Rauch,

Tung and Striebel [3)

• .~“ .-.~.. ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ U~~ -~~ - •



+ 1~R ’Q~~~ - x~~) ; ~ (T) = ~~(T). (~~.3l)

Secondly, assume that fl is square . Then D is f u l l  rank and f l ’ R 1D = 1.

Hence

d~ = A~dt + (dy - C~~~dt) ; ~ (T) = x~(T), 
(4.32)

which de f ines  a rea l i z at ion in S . No te that the orig inal realization S
0

need not be internal; it may have an initial condition x(0) ~ H(dy).

The problem of smoothing can be regarded as that of finding the “internal

part” of the state process. Given a realization S ~ S~ , we shall

next look at the structure of the “external part,” i.e., the smoothing error

x := x - ~~ . To this end , first note that, given a realization (i.1), there

exists an or thogonal pxp_matrix V (t )  for each t € [0,T] such that

rB(t ) 1 rB (t) B (tfl
- I I = I 

~~,
,, 2 1V(t), - 

(4 .33a)
LD (t )J LR (t) 0 J

where B1 is n X m and B
2 

is n x (p - in) . Next let

[dul
= V dw (4.33b)

Ld~J
define a pair of orthogonal increment processes u and v, of dimensions in

and p - r respectively. Obviously (4.33b) satisfies (1.2).

THEOREM 4 .3. Lc~ x be the state process of a reai~’Lzatio~: S c S.,.

and let B... ~~~ v be defined by (4.33).  Then the smoothing error x is

given by

= Q~(t)n(t) (4.34a)

-r:ndt + Q~~B8 d~ ; r~(T) = (4.34b).

--  .—. ___ ~~~~~ _4 . _f ;,~4_~~~ -



w7~ rc rt.~, = Q~~(T)fx(T) - x~(T)) and ~ is a (p -m) -dimensional- orthogonal

incrci~~ut ;~~~ cc~ of type (1.2) such that H(d~) .i. H(dy ) . The representation

(4.34 ) is a bac~z~,ard realization in the sens e tha t ~ H(d~) and the incre—

rner.ts of ~ arc given by

d~ = dv - B~ Q~~ (x - x~) dt. (4.35)

Proof. Define z~ := x - x ,. Replacing B dw and D dw in (1.1) by B1du +

B2dv and R1”2du respectively and noting that the innovation process w~,,

in (3.4) is given by

dw~ 
= du + R “2Cz~ dt (4.36)

and that B1 
- B~ = -Q~C’R~~

”2 (Lemma 3.1) , it is just a matter of simple cal-

culations to see that :~ satisfies

= r+z~ dt 
- q ’c ’i( ~~

2 du ~ B2 dv; z~ (O) =

for, since S c S.,, Q~(t)
1 

exists for all t € j O ,T) (Corollary 3.6.2). By

Lemma 2.3 and (4.36), i~ = Q~~~~ Z~~ satisfies the backward I4arkovian representation

dE~ = -r~~ dt — C ’R 112 dw~ + Q;’B2 dC ; ~(T) = ~T 
(4.37)

where ~ is given by (4.35). Since H(d~) i H(dw~) (by construction) and

H(dw~) = H( dy) , H(d~ ) .1. H(dy) as required. Now, in view of (4.27), ~ = z~ -

Q~:, i.e., (4.34a) holds with r~ := - ~~ . Then (4.34b) follows from (4.25) -

and (4.37). 0

As a corollary we see that the state process of any realization S c

can be decomposed into three orthogonal terms

x(t) = x~(t) 
+ Q~ (t)~~(t) + Q~ ( t )n ( t ) ,  (4. 38)

. - — - -~ - — - - . -
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each of which is the output of a stochastic system whose dynamical behavior

is determined by the function r~. This is seen from (4.25), (4.34) and the

fact that (3.2a) can be written

dx~ 
= r~x~ dt + B~ R~

’12 dy ; x~ (0) = 0. (4.39)

[Note that both (4.25) and (4.34b) are backward representations. If we trans-

form to the forward setting the systems matrices will be r~ rather than -l’,~.)

The internal realizations play an interesting role in the theory of smooth-

ing. These are precisely the representations (1.1) for which the smoothing

problem is trivial, i.e., x 0. The next theorem shows that (subject to a

mild regularity condition) S € S is internal if and only if 82 E 0 and the

components of the initial conditions of (1.1) belong to H(dy). In view of

Theorem 4.3, this is to be expected.

THEOREM 4.4. A realization S € S su~h that has full rank is in—

terna l if and only if S €

Proof. We only need to prove the “only if” part; the “if” part was proved

in Section 3. Let S be internal. Since the condition x(0) € FI(dy) holds

trivially, it only remains to show that B2, as defined by (4.33a), is idertti-

cally zero. In view of the fact that x = ~~, comparing (1.1) and (4.29) shows

that the identity

B(I - D ’R 1D)B’~dt + BD ’R~~Ddw = Bdw (4.40)

must hold. It is not hard to see that BD ’R~
1D = (B1,O)V and

B(I - D’R 1D)B’ = B2B~, and~ therefore (4.40) can be written

B2B~~dt 
= B2dv

which cannot hold unless B2 
= 0. Then the full rank condition implies that

p = m .  0 

~~~~~~~ 
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FOOTNOTES

1. Some of these shortcomings have been pointed out in a recent thesis by

1~a1i [48), brought to our attention after the submission of this paper.

2. e.g., the Moore-Penrose pseudo-inverse can be used.

3. It is not hard to see that the concept of minimality used here is equiva-

lent to assuming both that Ci) the input-output map of (1.la) is minimal

and that (ii) the family of state spaces {H
~
(x);t ~ [O ,T)} is minimal in

the sense of the geometric state space theory outlined in [27].
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